

#BLAHmuc Biomedical Linked Annotation Hackathon

IT Systems Engineering | Universität Potsdam

Text Mining to Support Data Curation for SABIO-RK

Mariana Neves, Maja Rey, Ulrike Wittig

September 19th, 2016

SABIO-RK database

It contains structured information about biochemical reactions and their corresponding kinetics

 It describes participants and modifiers of the reactions, as well as measured kinetic data embedded in their experimental and environmental context

Substrates	5										
name					location			comment			
ATP					- 3			32P-labe	32P-labelled		
5-Methylthi	io-D-ribo	<u>ose</u>			-	e) (5 T			
Products											
name					location		tion	comment			
ADP							+		-		
5-Methylthio-D-ribose 1-phosphate				-			-				
Modifiers											
name				locatio	ocation effect		comme		ent protein complex		
S-methyl-5-thioribose kinase(Enzyme)				-	1	Modifier-Catalyst -		- 3	(<u>O31663</u> -7)*2;		
Enzyme (p	rotein d	lata)		26			175				
		UniProtKB_AC na		ne mol. weight		weight (kDa)	ht (kDa) d		deviation (kDa)		
subunit	-	1110	-					-	100 (1493) (170)		
complex	-		0.2	-				-			
Kinetic La	w										
type		formula				annotation	n				
-						-	Construction of the second sec				

Heidelberg Institute for Theoretical Studies

Workflow in SABIO-RK

99.8 % from publications (ca. 5300), by students

100 % Rereading and curating by experts

http://sabiork.h-its.org

Heidelberg Institute for Theoretical Studies

SABIO-RK database

 Only scientific publications containing kinetic data such as Km, kcat or
 Vmax values are included in the database

Because it is well known that *in silico* function identification can be very misleading [15], we looked for a biochemical identification of the activity. Using protocols derived from the work of Riscoe and co-workers [16], we set up a cell-free biochemical assay, comparing the wild type strain, a disrupted

conditional mutant (BFS1850), and this using radioactive ATP as the phosphate type. Radioactive MTR-1-P was detect absence, nor in the *mtnK* of the enzyme be ca 60 µM (Fig. <u>4</u>). We also found the contained glycerol-1-P, whereas the mu not shown).

Paran	neter									
name	name type		species	start val.		end val.	deviat.	unit	comment	
A	concentrat	tion 7	5-Methylthio-D-ribose		0.0	320.0	-	μM	-	
E concentration		tion 7	Enzyme	(0.15	-	-	µg/ml	crude extract	
В	B concentration 7		ATP	Ϊ	1.0	-	-	mM	-	
Km	n <u>Km</u> ר		5-Methylthio-D-ribose	(60.0	-	-	μM	approximate valu	
Exper	imental co	onditio	ıs							8 - 111
	start value				end value					unit
pН	θH		9.0					2	2	
temperature		37.0					-	°C		
buffer		150 m	M Glycine, 1 mM MgCl2	2, 1 mM	A be	ta-Merca	ptoethar	lor		

Figure 3

Autoradiograph showing the outcome of the MTR kinase assay. The assay was carried out for 90 min at 37°C (see Materials and Methods). Lane 1 corresponds to [•³²P]ATP as standard; lanes 2, 4 and 6: no MTR was added for the reactions with ...

Distribution of relevant data within a publication

Difficulties in data extraction for SABIO-RK:

- Relevant data is scattered throughout the publication within free text, tables, figures
- Identifying data relations
- No defined data format
- Missing information (EC, Temp...)
- Inconsistencies
- Referenced data must be excluded
 - Protein and enzyme data
 - Biological source (organism, tissue, cell type)
 - Reactions and chemical compounds
 - Kinetic data
 - Experimental conditions

Heidelberg Institute for Theoretical Studies

[Wittig U, Kania R, Bittkowski M, Wetsch E, Shi L, Jong L, Golebiewski M, Rey M, Weidemann A, Rojas I, Müller W. Data extraction for the reaction kinetics database SABIO-RK, Perspectives in Science, (2014) 1, 33–40.]

Data curation in SABIO-RK

Arginase (L-arginine urea amidino hydrolase, EC 3.5.3.1) catalyses the hydrolysis of arginine to ornithine and urea and requires a bivalent metal ion, specially Mn^{2+} , for catalytic activity [1], [2], [3], [4], [5] and [6] and structural stabilization [4], [6] and [7]. Manganese ions are thought to activate a metal-bound water molecule, generating the hydroxide ion that nucleophilically attack the scissile guanidinium carbon of arginine [8] and [9]. An specially interesting aspect of the studies reported to date has been the detection of a $Mn^{2+}-Mn^{2+}$ cluster in the active site of fully activated arginases from rat liver and *Bacillus caldovelox* [10] and [11]. One of the Mn^{2+} , designated Mn^{2+}_A in the case of rat liver arginase, is more weakly bound than the other, Mn^{2+}_B [12].

	Homo sapiens					
liver T						
3.5.3.1						
574						
mutant H101N activated						
expressed in Escherichia coli						
in vitro						
		1				
-						
le	ocation	comment				
-		-				
-						
	2					
	location	comment	comment			
	-	-				
	574 mutant H10 expressed in vitro Arginine an Insulin sign Urea cycle	574 mutant H101N activated expressed in Escherichia coli in vitro Arginine and Proline metabolism Insulin signaling pathway Urea cycle - Incation	574 mutant H101N activated expressed in Escherichia coli in vitro Arqinine and Proline metabolism Insulin signaling pathway Urea cycle - location comment -			

Triage in SABIO-RK database

. Search should be based on the full text

Because it is well known that *in silico* function identification can be very misleading [15], we looked for a biochemical identification of the activity. Using protocols derived from the work of Riscoe and co-workers [16], we set up a cell-free biochemical assay, comparing the wild type strain, a disrupted conditional mutant (BFS1850), and this same mutant grown in the present of IPTG (see also below), using radioactive ATP as the phosphate donor. As shown in Fig. <u>3</u>, we found activity only in the wild type. Radioactive MTR-1-P was detected in the wild type when adding exogenous MTR, but not in its absence, nor in the *mtnK* of the enzyme for MTR has been mutant. The K_M approximately evaluated to be ca 60 μ M (Fig. <u>4</u>). We also found that in the preparations containing 5% glycerol, the wild type contained glycerol-1-P, whereas the mutant did not, showing that MtnK can phosphorylate glycerol (data not shown).

Figure 3

Autoradiograph showing the outcome of the MTR kinase assay. The assay was carried out for 90 min at 37°C (see Materials and Methods). Lane 1 corresponds to [•³²P]ATP as standard; lanes 2, 4 and 6: no MTR was added for the reactions with ...

(https://www.ncbi.nlm.nih.gov/pmc/articles/PMC55331/)

Text Mining platform at the HPI

Text mining platform

what <u>diseases</u> are related to mutation on the CFTF	R gene?
t of Diseases	
CYSTIC FIBROSIS	
INFECTION	
LIVER DISEASES	
LUNG DISEASES	
PANCREATITIS, CHRONIC	
EXOCRINE PANCREATIC INSUFFICIENCY	
DIABETES MELLITUS	
ASTHMA	
CYSTS	
POLYCYSTIC KIDNEY, AUTOSOMAL DOMINANT	
BACTERIAL INFECTIONS	

Resources in Medicate

Vocabulary thesaurus

229.000

Medical Publications

References to articles from biomedical journals

Unified Medical Language System PMC UMLS Health and biomedical vocabulary 1.300.000 7.400.000

PubMed Central

Open access full-text archive of biomedical literature

Natural Language Processing

Tasks in the hackathon

- . Analysis of the curation needs for the SABIO-RK database
- Evaluation of the HPI text mining platform
- . Reproducibility of existing data

Thank you for your attention!

Questions?

- E-mail: Mariana.Neves@hpi.de
- Web site: <u>http://hpi.de/plattner/projects/in-memory-natural-language-processing.html</u> <u>ocessing.html</u> Twitter: @marianalranewoc
- Twitter: @marianalraneves